Source code for windpowerlib.wind_farm

"""
The ``wind_farm`` module contains the class WindFarm that implements
a wind farm in the windpowerlib and functions needed for the modelling of a
wind farm.

"""

__copyright__ = "Copyright oemof developer group"
__license__ = "GPLv3"

from windpowerlib import tools, power_curves
import numpy as np
import pandas as pd
import warnings


[docs]class WindFarm(object): r""" Defines a standard set of wind farm attributes. Parameters ---------- name : str or None Name of the wind farm. wind_turbine_fleet : list(dict) Wind turbines of wind farm. Dictionaries must have 'wind_turbine' (contains a :class:`~.wind_turbine.WindTurbine` object) and 'number_of_turbines' (number of wind turbines of the same turbine type in the wind farm) as keys. coordinates : list(float) or None (optional) List with coordinates [lat, lon] of location. Default: None. efficiency : float or :pandas:`pandas.DataFrame<frame>` or None (optional) Efficiency of the wind farm. Provide as either constant (float) or power efficiency curve (pd.DataFrame) containing 'wind_speed' and 'efficiency' columns with wind speeds in m/s and the corresponding dimensionless wind farm efficiency. Default: None. Attributes ---------- name : str or None Name of the wind farm. wind_turbine_fleet : list(dict) Wind turbines of wind farm. Dictionaries must have 'wind_turbine' (contains a :class:`~.wind_turbine.WindTurbine` object) and 'number_of_turbines' (number of wind turbines of the same turbine type in the wind farm) as keys. coordinates : list(float) or None List with coordinates [lat, lon] of location. Default: None. efficiency : float or :pandas:`pandas.DataFrame<frame>` or None Efficiency of the wind farm. Either constant (float) power efficiency curve (pd.DataFrame) containing 'wind_speed' and 'efficiency' columns with wind speeds in m/s and the corresponding dimensionless wind farm efficiency. Default: None. hub_height : float The calculated mean hub height of the wind farm. See :py:func:`mean_hub_height` for more information. nominal_power : float The nominal power is the sum of the nominal power of all turbines in the wind farm in W. installed_power : float Installed nominal power of the wind farm in W. Deprecated! Use :attr:`~.wind_farm.WindFarm.nominal_power` instead. power_curve : :pandas:`pandas.DataFrame<frame>` or None The calculated power curve of the wind farm. See :py:func:`assign_power_curve` for more information. power_output : :pandas:`pandas.Series<series>` The calculated power output of the wind farm. Examples -------- >>> from windpowerlib import wind_farm >>> from windpowerlib import wind_turbine >>> enerconE126 = { ... 'hub_height': 135, ... 'rotor_diameter': 127, ... 'name': 'E-126/4200', ... 'fetch_curve': 'power_curve', ... 'data_source': 'oedb'} >>> e126 = wind_turbine.WindTurbine(**enerconE126) >>> example_farm_data = { ... 'name': 'example_farm', ... 'wind_turbine_fleet': [{'wind_turbine': e126, ... 'number_of_turbines': 6}]} >>> example_farm = wind_farm.WindFarm(**example_farm_data) >>> print(example_farm.nominal_power) 25200000.0 """ def __init__(self, name, wind_turbine_fleet, coordinates=None, efficiency=None, **kwargs): if coordinates is not None: warnings.warn( "Parameter coordinates is deprecated. In the future the " "parameter can only be set after instantiation of WindFarm " "object.", FutureWarning) self.name = name self.wind_turbine_fleet = wind_turbine_fleet self.coordinates = coordinates self.efficiency = efficiency self.hub_height = None self._nominal_power = None self._installed_power = None self.power_curve = None self.power_output = None @property def installed_power(self): r""" The installed nominal power of the wind farm. (Deprecated!) """ warnings.warn( 'installed_power is deprecated, use nominal_power instead.', FutureWarning) return self.nominal_power @installed_power.setter def installed_power(self, installed_power): self._installed_power = installed_power @property def nominal_power(self): r""" The nominal power of the wind farm. See :attr:`~.wind_farm.WindFarm.nominal_power` for further information. Parameters ----------- nominal_power : float Nominal power of the wind farm in W. Returns ------- float Nominal power of the wind farm in W. """ if not self._nominal_power: self.nominal_power = self.get_installed_power() return self._nominal_power @nominal_power.setter def nominal_power(self, nominal_power): self._nominal_power = nominal_power
[docs] def mean_hub_height(self): r""" Calculates the mean hub height of the wind farm. The mean hub height of a wind farm is necessary for power output calculations with an aggregated wind farm power curve containing wind turbines with different hub heights. Hub heights of wind turbines with higher nominal power weigh more than others. After the calculations the mean hub height is assigned to the attribute :py:attr:`~hub_height`. Returns ------- :class:`~.wind_farm.WindFarm` self Notes ----- The following equation is used [1]_: .. math:: h_{WF} = e^{\sum\limits_{k}{ln(h_{WT,k})} \frac{P_{N,k}}{\sum\limits_{k}{P_{N,k}}}} with: :math:`h_{WF}`: mean hub height of wind farm, :math:`h_{WT,k}`: hub height of the k-th wind turbine of a wind farm, :math:`P_{N,k}`: nominal power of the k-th wind turbine References ---------- .. [1] Knorr, K.: "Modellierung von raum-zeitlichen Eigenschaften der Windenergieeinspeisung für wetterdatenbasierte Windleistungssimulationen". Universität Kassel, Diss., 2016, p. 35 """ self.hub_height = np.exp( sum(np.log(wind_dict['wind_turbine'].hub_height) * wind_dict['wind_turbine'].nominal_power * wind_dict['number_of_turbines'] for wind_dict in self.wind_turbine_fleet) / self.get_installed_power()) return self
[docs] def get_installed_power(self): r""" Calculates :py:attr:`~nominal_power` of the wind farm. Returns ------- float Nominal power of the wind farm in W. See :py:attr:`~nominal_power` for further information. """ return sum( wind_dict['wind_turbine'].nominal_power * wind_dict['number_of_turbines'] for wind_dict in self.wind_turbine_fleet)
[docs] def assign_power_curve(self, wake_losses_model='power_efficiency_curve', smoothing=False, block_width=0.5, standard_deviation_method='turbulence_intensity', smoothing_order='wind_farm_power_curves', turbulence_intensity=None, **kwargs): r""" Calculates the power curve of a wind farm. The wind farm power curve is calculated by aggregating the power curves of all wind turbines in the wind farm. Depending on the parameters the power curves are smoothed (before or after the aggregation) and/or a wind farm efficiency (power efficiency curve or constant efficiency) is applied after the aggregation. After the calculations the power curve is assigned to the attribute :py:attr:`~power_curve`. Parameters ---------- wake_losses_model : str Defines the method for taking wake losses within the farm into consideration. Options: 'power_efficiency_curve', 'constant_efficiency' or None. Default: 'power_efficiency_curve'. smoothing : bool If True the power curves will be smoothed before or after the aggregation of power curves depending on `smoothing_order`. Default: False. block_width : float Width between the wind speeds in the sum of the equation in :py:func:`~.power_curves.smooth_power_curve`. Default: 0.5. standard_deviation_method : str Method for calculating the standard deviation for the Gauss distribution. Options: 'turbulence_intensity', 'Staffell_Pfenninger'. Default: 'turbulence_intensity'. smoothing_order : str Defines when the smoothing takes place if `smoothing` is True. Options: 'turbine_power_curves' (to the single turbine power curves), 'wind_farm_power_curves'. Default: 'wind_farm_power_curves'. turbulence_intensity : float Turbulence intensity at hub height of the wind farm for power curve smoothing with 'turbulence_intensity' method. Can be calculated from `roughness_length` instead. Default: None. roughness_length : float (optional) Roughness length. If `standard_deviation_method` is 'turbulence_intensity' and `turbulence_intensity` is not given the turbulence intensity is calculated via the roughness length. Returns ------- :class:`~.wind_farm.WindFarm` self """ # Check if all wind turbines have a power curve as attribute for item in self.wind_turbine_fleet: if item['wind_turbine'].power_curve is None: raise ValueError("For an aggregated wind farm power curve " + "each wind turbine needs a power curve " + "but `power_curve` of wind turbine " + "{} is {}.".format( item['wind_turbine'].name if item['wind_turbine'].name else '', item['wind_turbine'].power_curve)) # Initialize data frame for power curve values df = pd.DataFrame() for turbine_type_dict in self.wind_turbine_fleet: # Check if all needed parameters are available and/or assign them if smoothing: if (standard_deviation_method == 'turbulence_intensity' and turbulence_intensity is None): if 'roughness_length' in kwargs: # Calculate turbulence intensity and write to kwargs turbulence_intensity = ( tools.estimate_turbulence_intensity( turbine_type_dict['wind_turbine'].hub_height, kwargs['roughness_length'])) kwargs['turbulence_intensity'] = turbulence_intensity else: raise ValueError( "`roughness_length` must be defined for using " + "'turbulence_intensity' as " + "`standard_deviation_method` if " + "`turbulence_intensity` is not given") if wake_losses_model is not None: if self.efficiency is None: raise KeyError( "`efficiency` is needed if " + "`wake_losses_model´ is '{0}', but ".format( wake_losses_model) + "`efficiency` of wind farm {0} is {1}.".format( self.name if self.name else '', self.efficiency)) # Get original power curve power_curve = pd.DataFrame( turbine_type_dict['wind_turbine'].power_curve) # Editions to the power curves before the summation if smoothing and smoothing_order == 'turbine_power_curves': power_curve = power_curves.smooth_power_curve( power_curve['wind_speed'], power_curve['value'], standard_deviation_method=standard_deviation_method, block_width=block_width, **kwargs) else: # Add value zero to start and end of curve as otherwise # problems can occur during the aggregation if power_curve.iloc[0]['wind_speed'] != 0.0: power_curve = pd.concat( [pd.DataFrame(data={ 'value': [0.0], 'wind_speed': [0.0]}), power_curve]) if power_curve.iloc[-1]['value'] != 0.0: power_curve = pd.concat( [power_curve, pd.DataFrame(data={ 'value': [0.0], 'wind_speed': [ power_curve['wind_speed'].loc[ power_curve.index[-1]] + 0.5]})]) # Add power curves of all turbine types to data frame # (multiplied by turbine amount) df = pd.concat( [df, pd.DataFrame(power_curve.set_index(['wind_speed']) * turbine_type_dict['number_of_turbines'])], axis=1) # Aggregate all power curves wind_farm_power_curve = pd.DataFrame( df.interpolate(method='index').sum(axis=1)) wind_farm_power_curve.columns = ['value'] wind_farm_power_curve.reset_index('wind_speed', inplace=True) # Apply power curve smoothing and consideration of wake losses # after the summation if smoothing and smoothing_order == 'wind_farm_power_curves': wind_farm_power_curve = power_curves.smooth_power_curve( wind_farm_power_curve['wind_speed'], wind_farm_power_curve['value'], standard_deviation_method=standard_deviation_method, block_width=block_width, **kwargs) if (wake_losses_model == 'constant_efficiency' or wake_losses_model == 'power_efficiency_curve'): wind_farm_power_curve = ( power_curves.wake_losses_to_power_curve( wind_farm_power_curve['wind_speed'].values, wind_farm_power_curve['value'].values, wake_losses_model=wake_losses_model, wind_farm_efficiency=self.efficiency)) self.power_curve = wind_farm_power_curve return self